Original Research

Morning Discharges and Patient Length of Stay in Inpatient General Internal Medicine

Author and Disclosure Information

Abstract

BACKGROUND: Many initiatives seek to increase the number of morning hospital discharges to improve patient flow, but little evidence supports this practice.

OBJECTIVE: To determine the association between the number of morning discharges and emergency department (ED) length of stay (LOS) and hospital LOS in general internal medicine (GIM).

DESIGN, SETTING, AND PARTICIPANTS: Multicenter retrospective cohort study involving all GIM patients discharged between April 1, 2010, and October 31, 2017, at seven hospitals in Ontario, Canada.

MAIN MEASURES: The primary outcomes were ED LOS and hospital LOS, and secondary outcomes were 30-day readmission and in-hospital mortality. The number of morning GIM discharges (defined as the number of patients discharged alive between 8:00 am and 12:00 pm ) on the day of each hospital admission was the primary exposure. Multivariable regression models were fit to control for patient characteristics and situational factors, including GIM census.

RESULTS: The sample included 189,781 patient admissions. In total, 36,043 (19.0%) discharges occurred between 8:00 am and 12:00 pm . The average daily number of morning discharges and total discharges per hospital was 1.7 (SD, 1.4) and 8.4 (SD, 4.6), respectively. The median ED LOS was 14.5 hours (interquartile range [IQR], 10.0- 23.1), and the median hospital LOS was 4.6 days (IQR, 2.4-9.0). After multivariable adjustment, there was not a significant association between morning discharge and hospital LOS (adjusted rate ratio [aRR], 1.000; 95% CI, 0.996-1.000; P = .997), ED LOS (aRR, 0.999; 95% CI, 0.997-1.000; P = .307), 30-day readmission (aRR, 1.010; 95% CI, 0.991-1.020; P = .471), or in-hospital mortality (aRR, 0.967; 95% CI, 0.920-1.020; P = .183). The lack of association between morning discharge and LOS was generally consistent across all seven hospitals. At one hospital, morning discharge was associated with a 1.9% shorter ED LOS after multivariable adjustment (aRR, 0.981; 95% CI, 0.966-0.996; P = .013).

CONCLUSIONS: The number of morning discharges was not significantly associated with shorter ED LOS or hospital LOS in GIM. Our findings suggest that increasing the number of morning discharges alone is unlikely to substantially improve patient throughput in GIM, but further research is needed to determine the effectiveness of specific interventions.

© 2021 Society of Hospital Medicine

There is substantial interest in improving patient flow and reducing hospital length of stay (LOS).1-4 Impaired hospital flow may negatively impact both patient satisfaction and safety through, for example, emergency department (ED) overcrowding.5,6 Impaired hospital flow is associated with downstream effects on patient care, hospital costs, and availability of beds.7-9

A number of quality-improvement interventions aim to improve patient flow, including efforts to increase the number of discharges that occur before noon.10,11 Morning discharges have been hypothesized to free hospital beds earlier, thus reducing ED wait times for incoming patients and increasing beds for elective surgeries.11 Morning discharges may also be more predictable for staff and patients. However, it is unclear whether efforts to increase the number of morning discharges have a negative impact on inpatient LOS by incentivizing physicians to keep patients in the hospital for an extra night to facilitate discharge in the early morning rather than the late afternoon. Morning discharges have been associated with both increased12 and decreased LOS.10,11,13-15

The purpose of this study was to examine the associations between morning discharges and ED LOS and hospital LOS in general internal medicine (GIM) at seven hospitals. GIM patients represent nearly 40% of ED admissions to a hospital,16 and thus are an important determinant of patient flow through the ED and hospital. We hypothesized that patients who were admitted to GIM on days with more morning discharges would have shorter ED LOS and hospital LOS.

METHODS

Design, Setting, and Participants

This was a retrospective cohort study conducted using the General Medicine Inpatient Initiative (GEMINI) clinical dataset.16 The dataset includes all GIM admissions at seven large hospital sites in Toronto and Mississauga, Ontario, Canada. These include five academic hospitals and two community-based teaching hospitals. Each hospital is publicly funded and provides tertiary and/or quaternary care to diverse multiethnic populations. Research ethics board approval was obtained from all participating sites.

GIM care is delivered by several interdisciplinary clinical teams functioning in parallel. Attending physicians are predominantly internists who practice as hospitalists in discrete service blocks, typically lasting 2 weeks at a time. Although GIM patients are preferentially admitted to GIM wards, participating hospitals did not have strict policies regarding cohorting GIM patients to specific wards (ie, holding patients in ED until a specific bed becomes available) that would confound the association between morning discharge and ED wait times. Approximately 75% of GIM patients are cared for on dedicated GIM wards at participating hospitals, with the remainder cared for on other medical or surgical wards.

We included all hospitalized patients who were admitted to hospital and discharged from GIM between April 1, 2010, and October 31, 2017, from the seven GEMINI hospitals. We included only patients admitted through the ED. As such, we did not include elective admissions or interfacility transfers who would not experience ED wait times. We excluded patients who were discharged without a provincial health insurance number (N = 2,169; 1.1% of total sample) because they could not be linked across visits to measure readmissions.

Data Source

The GEMINI dataset has been rigorously validated and previously described in detail.16 GEMINI collects both administrative health data reported to the Canadian Institute for Health Information (including data about patient demographics, comorbidities, and discharge destination) as well as electronic clinical data extracted from hospital computer systems (including attending physicians, in-hospital patient room transfers, and laboratory test results). Data are collected for each individual hospital encounter, and the provincial health insurance number is used to link patients across encounters.

Exposures and Outcomes

The primary exposure was the number of GIM patients discharged alive between 8:00 am and 12:00 pm (ie, morning GIM discharges) on the day of admission for each hospital encounter. This time window to define morning discharges was selected based on previous literature.10-13 To report admission characteristics and unadjusted outcomes, hospital days were categorized into quartiles within each hospital based on the number of morning GIM discharges. Hospital days with the lowest number of morning discharges were classified into Q1 and the highest number of morning discharges into Q4, and quartiles were pooled across hospitals.

The two primary outcomes were ED LOS and hospital LOS. ED LOS was calculated as the difference between the time from triage by nursing staff to a patient’s exit from the ED, measured in hours. We also examined 30-day readmission to GIM at any participating hospital as a balancing measure against premature discharges and inpatient mortality because it could modify hospital LOS.

Patient Characteristics

Baseline patient characteristics were measured, including age, sex, Charlson Comorbidity Index score,17 day of admission (categorized as weekend/holiday or weekday), time of admission to hospital (categorized as daytime, 8:00 am to 4:59 pm, or nighttime, 5:00 pm to 07:59 am), study month, hospital site, and whether patients had been admitted to GIM in the prior 30 days. We used laboratory data to calculate the baseline Laboratory-based Acute Physiology Score (LAPS), which is a validated predictor of inpatient mortality when combined with age and Charlson Comorbidity Index score.18,19 GIM census on day of admission was calculated in order to include overall patient volumes as an important adjustment variable that could confound the association between morning discharges and patient flow.

Statistical Analysis

The study population and physician characteristics were summarized with descriptive statistics. The balance of baseline patient characteristics across morning discharge quartiles was assessed using standardized differences. A standardized difference of less than 0.1 reflects good balance.20

Unadjusted estimates of patient outcomes were reported across morning discharge quartiles. To model the overall association between morning discharge and outcomes, the number of morning GIM discharges on the day of admission was subtracted from the mean number of morning discharges at each hospital and considered as a continuous exposure. We used generalized linear mixed models to estimate the effect of morning discharges on patient outcomes. We fit negative binomial regression models with log link to examine the association between the number of morning discharges (centered by subtracting the hospital mean) and the two main outcomes, ED LOS and hospital LOS. Given the overdispersion of the study population due to the unequal mean and variance, a negative binomial model was preferred over a Poisson regression, as the mean and variance were not equal.21 For our secondary outcomes of binary measures (30-day readmission and morality), we fit logistic regression models. Adjustment for multiple comparisons was not performed.

Multivariable analysis was conducted to adjust for the baseline characteristics described above as well as the total number of GIM discharges on the day of admission and GIM census on the day of admission. Hospital and study month (to account for secular time trends) were included as fixed effects, and patients and admitting physicians were included as crossed random effects to account for the nested structure of admissions within patients and admissions within physicians within hospitals.

A sensitivity analysis was performed to assess for nonlinear associations between morning discharges and the four outcomes (hospital LOS, ED LOS, in-hospital mortality, and readmission) by inputting the term as a restricted cubic spline, with up to five knots, in multivariable regression models. We compared the Akaike information criteria (AIC), computed using the log-likelihood, to determine the goodness-of-fit from the negative binomial models.22 We replicated models for each individual hospital to examine whether any hospital-specific associations existed. Two additional sensitivity analyses were performed to examine heterogeneity in hospital-specific effects. Regression models were fit, including interaction terms between morning discharge and hospital, as well as interaction terms between hospital and the total number of GIM discharges and GIM census. The findings of these models (data not presented) were qualitatively similar to the overall results.

RESULTS

Study Population and Patient Characteristics

The study population consisted of 189,781 hospitalizations involving 115,630 unique patients. The median patient age was 73 years (interquartile range [IQR], 57-84), 50.3% were female, 43.8% had a high Charlson Comorbidity Index score, and 11.1% were admitted to GIM in the prior 30 days (Table 1). The median ED LOS was 14.5 hours (IQR, 10.0-23.1), and the mean was 18.1 hours (SD, 12.2). The median hospital LOS was 4.6 days (IQR, 2.4-9.0), and the mean was 8.6 days (SD, 18.7).

Admission Characteristics

In total, 36,043 (19.0%) discharges occurred between 8:00 am and 12:00 pm. The average number of total daily discharges per hospital was 8.4 (SD, 4.6), and the average number of morning discharges was 1.7 (SD, 1.4). Morning discharges varied across hospitals, ranging from 0.9 per day (SD, 1.1) to 2.1 (SD, 1.6) (Appendix Table 1). The average number of morning discharges in the lowest quartile (Q1) was 0.3 (SD, 0.5) and was 3.3 (SD, 1.2) in the highest quartile (Q4). Baseline patient characteristics were well balanced across the quartiles, with standardized differences less than 0.1 (Table 1), except day of admission and GIM census. Days with a greater number of morning discharges were more likely to be weekdays rather than weekends/holidays (89.2% weekday admissions in Q4 compared with 53.9% in Q1). The median GIM census was 93 patients (IQR, 79-109).

Outcomes

Unadjusted clinical outcomes by number of morning discharges are presented in Table 2. The median unadjusted ED LOS was 14.4 (SD, 14.1), 14.3 (SD, 13.2), 14.5 (SD, 13.0), and 14.8 (SD, 13.0) hours for the first to fourth quartiles (fewest to largest number of morning discharges), respectively. The median unadjusted hospital LOS was 4.6 (SD, 6.5), 4.6 (SD, 6.9), 4.7 (SD, 6.4), and 4.6 (SD, 6.4) days for the first to fourth quartiles, respectively.

Description of Unadjusted Clinical Outcomes by Number of Morning Discharges

Unadjusted inpatient mortality was 6.1%, 5.5%, 5.5%, and 5.2% across the first to fourth quartiles, respectively. Unadjusted 30-day readmission to GIM was 12.2%, 12.6%, 12.6%, and 12.5% across the first to fourth quartiles, respectively.

After multivariable adjustment, there was no significant association between morning discharge and hospital LOS (aRR, 1.000; 95% CI, 0.996-1.000; P = .997), ED LOS (aRR, 0.999; 95% CI, 0.997-1.000; P = .307), in-hospital mortality (aRR, 0.967; 95% CI, 0.920-1.020; P =.183), or 30-day readmission (aRR, 1.010; 95% CI, 0.991-1.020; P = .471) (Table 3, Appendix Table 2, Appendix Table 3, Appendix Table 4, Appendix Table 5). When examining each hospital separately, we found that morning discharge was significantly associated with hospital LOS at only one hospital (Hospital D; aRR, 0.981; 95% CI, 0.966-0.996; P = .013). Morning discharge was statistically significantly associated with ED LOS at three hospitals (A, B, and C), but the aRR was at least 0.99 in all three cases (Table 4).

Association Between Morning Discharges and Clinical Outcomes, Before and After Multivariable Adjustment

In sensitivity analyses, we found no improvements in model fit when adding spline terms to the model, suggesting no significant nonlinear associations between morning discharges and the outcomes of interest.

Hospital-Specific Associations Between Morning Discharges and Clinical Outcomes

DISCUSSION

This large multicenter cohort study found no significant overall association between the number of morning discharges and ED or hospital LOS in GIM. At one hospital, there was a 1.9% reduction in adjusted ED LOS for every additional morning discharge, but no difference in hospital LOS. We also did not observe differences in readmission or inpatient mortality associated with the number of morning discharges. Our observational findings suggest that there is unlikely to be a strong association between morning discharge and patient throughput in GIM. Given that there may be other downstream benefits of morning discharge, such as freeing beds for daytime surgeries,23 further research is needed to determine the effectiveness of specific interventions.

Several studies have posited morning discharge as a method of improving both patient care and hospital flow metrics.10,11,13-15,23 Quality improvement initiatives targeting morning discharges have included stakeholder meetings, incentives programs, discharge-centered breakfast programs, and creating deadlines for discharge orders.24-29 Although these initiatives have gained support, critics have suggested that their supporting evidence is not robust. Werthemier et al10 found a 9.0% reduction of observed to expected LOS associated with increasing the number of early discharges. However, a response article suggested that their findings were confounded by other hospital initiatives, such as allocation of medical and social services to weekends.30 Other observational studies have concluded that hospital LOS is not affected by the number of morning discharges, but this research has been limited by single-center analysis and relatively smaller sample sizes.12 Our study further calls into question the association between morning discharge and patient throughput.

An additional reason for the controversy is that physicians may actively work to discharge patients late in the day to avoid an additional night in hospital. A qualitative study by Minichiello et al31 evaluated staff perceptions regarding afternoon discharges. Physicians and medical students believed that afternoon discharges were a result of waiting for test results and procedures, with staff aiming to discharge patients immediately after obtaining results or finishing necessary procedures. As such, there are concerns that incentivizing morning discharge may lead physicians in the opposite direction, to consciously or unconsciously keep patients overnight in order to facilitate an early morning discharge.30

Our study’s greatest strength was the large sample size over 7 years at seven hospitals in two cities, including both academic and community hospitals with different models of care. To our knowledge, this is the first cohort study that has analyzed the association between early discharge and LOS using multiple centers. To avoid the confounding and reverse causality that may exist when examining the relationship between LOS and morning discharge at the patient level (eg, patients who stay in hospital longer may have more “planned” discharges and leave in the morning), we examined the association based on variation across different days within the GIM service of each hospital. Further, we included robust risk adjustment using clinical and laboratory data. Finally, since our study included a diverse patient population served by participating centers in a system with universal insurance for hospital care, our findings are likely generalizable to other urban and suburban hospitals.

There are several important limitations of our analysis. First, we could only include GIM patients, who represent nearly 40% of ED admissions to hospital at participating centers. A more holistic analysis across all hospital services could be justified; however, given that many quality improvement initiatives occur at the level of a single hospital service, we felt our approach would be informative for future research and improvement efforts. Approximately 75% of GIM patients at participating hospitals were cared for on a GIM ward, with 25% cared for on off-service units. We were unable to include the total hospital census in our models, and this could affect LOS and waiting times for GIM patients, particularly those admitted to off-service units. GIM census is likely highly correlated with hospital census, and we were able to adjust for this. Nevertheless, this remains an important potential source of unmeasured confounding. Second, we did not model the effects of morning discharges from GIM on patient-flow measures for non-GIM patients. Given the lack of effects for GIM patients, who would be more likely to be directly affected, it is unlikely that large effects would be seen for other hospital patients, but we did not measure effects on surgical delays or cancellations, for example.23 Third, we report 30-day readmission to GIM at participating hospitals only, rather than all readmissions. However, prior research in our region demonstrated that 82% of hospital readmissions occur to the same site.32 Thus, our measure, which includes admission to any participating hospital, likely captures more than 80% of all readmissions, and this was a secondary outcome in our analysis. Finally, qualitative metrics, such as patient or provider satisfaction, were not measured in our study. Earlier discharge may impact patient care in other ways by being more predictable for staff, improving bed allocation for daytime procedures, making medication pick-ups easier to arrange, or making consultations with allied health services more convenient.11,28,33 Conversely, if pressured to discharge before noon, providers may feel rushed to complete tasks and may face disruptions to typical workflow.24 As such, future research is needed to provide a more complete understanding of the impact of early-morning discharge beyond hospital flow. Given the lack of a strong association observed between morning discharge and patient throughput in our study, further research should also consider the opportunity costs of interventions designed to improve morning discharge.

CONCLUSION

The number of morning discharges was not significantly associated with shorter ED LOS or hospital LOS for GIM patients. Our observational findings suggest that increasing morning discharges alone may not substantially improve patient flow in GIM. Further research is needed to evaluate specific morning discharge interventions and assess hospital-wide effects.

References

Online-Only Materials

   Comments ()